Breakup of fluid droplets in electric and magnetic fields
J. D. Sherwood a1
a1 Schlumberger Cambridge Research, P.O. Box 153, Cambridge CB3 0HG, UK
Abstract
A drop of fluid, initially held spherical by surface tension, will deform when an electric or magnetic field is applied. The deformation will depend on the electric/magnetic properties (permittivity / permeability and conductivity) of the drop and of the surrounding fluid. The full time-dependent low-Reynolds-number problem for the drop deformation is studied by means of a numerical boundary-integral technique. Fluids with arbitrary electrical properties are considered, but the viscosities of the drop and of the surrounding fluid are assumed to be equal.
Two modes of breakup have been observed experimentally: (i) tip-streaming from drops with pointed ends, and (ii) division of the drop into two blobs connected by a thin thread. Pointed ends are predicted by the numerical scheme when the permittivity of the drop is high compared with that of the surrounding fluid. Division into blobs is predicted when the conductivity of the drop is higher than that of the surrounding fluid. Some experiments have been reported in which the drop deformation exhibits hysteresis. This behaviour has not in general been reproduced in the numerical simulations, suggesting that the viscosity ratio of the two fluids can play an important role.
(Published Online April 21 2006)
(Received January 10 1986)
(Revised August 14 1987)
http://journals.cambridge.org/action/displayAbstract;jsessionid=7EC467C06DA4A85B7D144055184D5423.tomcat1?fromPage=online&aid=394008
No comments:
Post a Comment